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Embedded in countless natural products and medicinally relevant
compounds, the indole heterocycle has served to inspire synthetic
chemists for well over a century.1 The hapalindole and fischerindole
classes of natural products piqued our interest by virtue of their
structural beauty and bioactivity.2 Our retrosynthetic analysis of
hapalindole Q (1, Figure 1)2 led to hypothetical indole- and carvone-
derived synthons2+ and3- (Figure 1). By analogy to Barton’s
classic synthesis of usnic acid, which utilized a phenolate radical
coupling,3 we reasoned that bond formation between2 and3 could
conceivably be accomplished through a coupling of radicals2• and
3• which should be accessible via oxidation of the corresponding
anions 2- and 3-. While oxidative dimerization of enolates is
known,4 the analogous process with indoles (or metallo-enamines)
is not. In fact, the heterocoupling of enolates has seen little use in
synthesis since the process is plagued by low yields, the use of equi-
molar quantities of metal salts relative to those of all enolate species
present, and the requirement of a large excess (3-10 equiv) of one
of the partners to avoid homocoupling. Described herein are short,
enantioselective, protecting group-free total syntheses of (+)-1 and
12-epi-fischerindole U isothiocyanate (-)-108 based on the analysis
outlined above. Further, these syntheses overcome the limitations
of enolate coupling and set a precedent that is extended to the
coupling of indoles with a diverse set of ketones, esters, and amides.

Empirical validation of our design (Figure 1) was obtained by
employing “standard” conditions for ketone enolate couplings.4

Thus, as shown in Table 1 (entry 1), addition of LDA (4.0 equiv)
to a 3-fold excess of3 relative to2 followed by FeCl3 (4.0 equiv)
resulted in ca. 15% yield of adduct4 as a single diastereomer
(colorless cubes, mp 129-130 °C, see Scheme 1 for X-ray
crystallographic analysis). After evaluating numerous oxidants we
found that copper(II)2-ethylhexanoate5 consistently provided higher
yields and eliminated the need to use DMF as cosolvent (entry 2).
Similar results were obtained by using equimolar amounts of both
2 and3 (entry 3). Another increase in yield occurred using a 3-fold
excess of2 (entry 4). The optimum protocol emerged upon addition
of LHMDS (3.0 equiv) to a solution of2 (2.0 equiv) and3 (1.0
equiv) in THF at-78 °C followed by addition of 1.5 equiv of
copper(II)2-ethylhexanoate to furnish4 in 53% isolated yield (70%
based on recovered starting material (sm), entry 5). The remainder
of the material consists of recovered2 and3 and a small amount
of carvone dimer (indole dimer was not observed). The yield is
not diminished even on>100 mmol scale. The use of substoichio-
metric quantities of oxidant (relative to moles of all anionic species)
in an enolate coupling is without precedent,4 and the mechanistic
implications of this finding will be discussed elsewhere.6

With a simple route to obtain multigram quantities of4 from
(R)-carvone, completion of the total synthesis of (+)-17 was
accomplished by executing the following operations (Scheme 1):
(1) deprotonation of the indole N-H of 4 (LHMDS, THF, -78
°C),9 conjugate reduction10 and stereoselective quenching of the

resulting enolate with acetaldehyde (L-Selectride, THF,-78 °C, 1
h; then CH3CHO,-78 f 23 °C, 2 h); (2) dehydration of the crude
alcohol5 (Martin sulfurane, CHCl3, 23 °C, 10 min) to give indole
67a in 75% overall yield, intersecting with the Albizati synthesis;7a

(3) microwave-enhanced11,12 reductive amination (NaBH3CN (10
equiv), NH4OAc (40 equiv), MeOH, THF, 150°C, 2 min) to furnish
the amine7 as a 6:1 mixture of diastereomers; and (4) conversion
to (+)-1 by isothiocyante formation7a (CS(imid)2 (1.1 equiv, CH2-
Cl2, 23 °C).13

The total synthesis of (-)-108 was completed from indole6 by
the following short sequence: (1) biomimetic8,14acid-catalyzed ring
closure (TMSOTf, 25°C, 1 h) of6 to afford ketone8 in 75% yield
based on recovered sm; (2) standard reductive amination of8 to
furnish the amine9 as a 10:1 mixture of diastereomers in 60%
yield; and (3) conversion of9 to (-)-10by isothiocyanate formation.
Based on the optical rotation of synthetic (-)-10{[R]D -200 (CH2-
Cl2, c 0.020), lit. [R]D +231 (CH2Cl2, c 0.035)}, the absolute
configuration of natural (+)-10 is opposite that depicted in Scheme
1 (9S,10R,11R,12R). The synthetic pathway to (+)-hapalindole Q

Figure 1. Retrosynthetic analysis of (+)-1 leads to the invention of a direct
coupling of indoles with carbonyl compounds.

Table 1. Selected Optimization Results of 2 + 3 f 4

a Isolated yield after chromatography.b Yield based on recovered sm.
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(1) and (-)-12-epi-fischerindole U isothiocyanate (10) proceeds
in 22% and 15% overall yield from (R)-carvone, respectively.

The scope of the direct indole coupling was briefly evaluated
by the study of the examples summarized in Table 2 using
conditions established for the synthesis of4. Free alcohols are
tolerated (12, additional LHMDS added), hindered indoles such as
13are accessible, and amides also participate in this reaction (14-
18) as illustrated with Evans and Oppolzer auxiliaries. The latter
substrates (15-18) proceed with high diastereoselectivity. The
method also works with functionalized indole substrates (16-18)
and tert-butyl esters (19).

In conclusion, we have developed a new and practical method
for the direct coupling of indoles with carbonyl compounds that
has been applied to the most concise and efficient synthesis of (+)-1
yet reported and to the first total synthesis and absolute configu-
ration assignment of a fischerindole [(-)-10]. This protocol can
be used to construct quaternary carbon centers, is amenable to
asymmetric synthesis, and can be performed on a multigram scale.
Indoles that would be otherwise unobtainable in a single step from
readily available materials are now easily accessed, thus filling a
gap in indole synthesis methodology.1
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Scheme 1. Enantioselective Total Syntheses of (+)-1 and (-)-10a

a Reagents and conditions: (a) LHMDS (1.5 equiv), THF,-78 °C, 20
min thenL-Selectride (1.05 equiv), 1 h, then CH3CHO (6.0 equiv),-78f23
°C, 2 h; (b) Martin sulfurane (1.1 equiv), CHCl3, 10 min, 75% overall; (c)
TMSOTf (3.0 equiv), MeOH (1.1 equiv), CH2Cl2, 0 °C, 1 h, 75% bsm; (d)
NaBH3CN (10 equiv), NH4OAc (40 equiv), MeOH, THF, 150°C, 2 min,
61% (7); for 9: same reagents, 23°C, 48 h, 55%; (e) CS(imid)2 (1.1 equiv),
CH2Cl2, 0f23 °C, 3 h, 63% (1), 60% (10).

Table 2. Preparation of R-Indole Carbonyl Compounds

a Isolated yield after chromatography.b Yield based on recovered sm.
c LDA used.
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